
1. PHOTON ROCĸET (5 points) — Solution by
Taavet Kalda, grading schemes by ....

i) (1 point)At non‐relativistic speeds, we can
apply classical momentum and energy con‐
servation to find the acceleration in terms of
the antimatter burning rate µ. In a time in‐
terval ∆t, a mass of ∆m = µ∆t antimatter an‐
nihilates with an equal mass of matter. The
resulting photons have an energy equal to
the annihilated rest energy ∆E = 2∆mc2. For
maximal acceleration, the photons have to
be all emitted in the same direction (can be
achieved, for example, using mirrors). The
resulting photon cloud will then have a mo‐
mentum of ∆p = ∆E/c. From the conser‐
vation of momentum, the space ship must
get a momentum boost in the opposite dir‐
ection, equal to ∆p = M∆v = M g∆t. Com‐
bining everything, we get µ = M g/(2c2) =
5.45×10−12 kg/s.

ii) (3 points) The final speed is easiest to
find by applying energy and momentum (4‐
momentum) conservation in the initial and
final configurations. If the final rest mass
of the ship is m f , then M − m f of antimat‐
ter is burnt throughout the acceleration and
an equal amount of matter is burnt from the
interstellar space. Hence, it makes sense to
consider the system of the ship + the burnt
interstellar gas.

The initial rest mass of the system is M+
(M −m f ) = 2M −m f = Mi. This corresponds
to an energy of E i = Mi c2 and momentum
pi = 0 due to the gas and the ship initially be‐
ing at rest.

In the final configuration, we have the
space ship moving with a speed of v with
energy E f and momentum p f . We also
have a photon cloud with energy Ep and
momentum pp, moving opposite to the dir‐
ection of the space ship. Then the energy
and momentum conservation simply read as
E f +Ep = E i and pi = 0 = p f + pp. We also

have the 4‐momentum invariant for both the
space ship and the photon gas. They read
E2

f − p2
f c2 = m2

f c4 and E2
p − p2

p c2 = 0. Solving
the 4 equations (with 4 unknowns), we get

p f =
M2

i −m2
f

2Mi
c, E f =

M2
i +m2

f

2Mi
c.

We could find the velocity by solving for v f
in the expression for the relativistic energy
E f = m f γ f c2 with γ f = (1−v2

f /c2)−0.5. A faster
way, however, would be to use the expres‐
sion for final momentum, p f = m f γ f v, and
notice that

v f =
p f

E f
c2 =

M2
i −m2

f

M2
i +m2

f
c

=
(2M−m f )2 −m2

f

(2M−m f )2 +m2
f

c

= 180
181

c ≈ 0.9945c.

iii) (1 point)The last photon is emitted when
the space ship moves at a speed of v f . The
photon is observed by a stationary observer.
We can directly use the relativistic Doppler
shift effect to find

fobs = f0

√
1−v/c
1+v/c

= m f

Mi
f0

= m f

2M−m f
f0 = 1

19
f0.

2. GAſ AND FLUıD FLOWſ (10 points) — Solu
tion by Taavet Kalda, grading schemes by ....

i) (1 point) As the plate falls, it will rotate
around the bump without slipping and push
the air out from beneath it, at ever faster
speeds, the closer it gets to the bottom plate.
As such, part of the rotational energy of the
plate is transferred over to the escaping air
molecules. Further, the pressure and tem‐
perature of the gas is uniform, because of the
incompressibility condition.

Since the problem is 2‐dimensional, the
mass, volumes, moment of inertia and other
quantities are per unit length of the system
(on the figure, into the page). Let x mark the
distance from the bump and v denote the ho‐
rizontal speed of air at x. There is a volume of
air equal toV (x)= xhx/(2L) between x = 0 and
x. As the plate falls down, V (x) gets smaller
and as a result, air is pushed out. Consider a
small time interval dt. In that time interval, h
changes by ḣdt =−ωLdt. From the conserva‐
tion of air particles, 0= dV (x)+v(x)hx/L with
dV (x)=−x2ω/2. Hence,

v(x)= xLω

2h
.

Evaluated at x = L, this yields

v(x = L)= L2ω

2h
.

ii) (2.5 points) Since the air flow is laminar
and there is no diffusion, all of the lost ro‐
tational energy from the falling glass plate
will be converted into kinetic energy of air
particles. As such, we have Krot+Kair = const.
We found from the previous parts that the air
is pushed out at ever faster speeds (between
the plates, v(x) ≫ Lω) from between the two
plates. However, outside of the two plates,
the flow will diffuse fast in all directions,
such that the vast majority of kinetic energy
will be concentrated between the two plates.

The kinetic energy of the air between the
two plates is

Kin =
∫ L

0
dx

hx
L

ρa
1
2

v(x)2

= ρaLω2

8h

∫ L

0
x3dx

= ρaL5ω2

32h
,

and the rotational energy of the glass plate is

Krot = Iω2

2
= mglassL2

3
ω2

2
= L3tρgω

2

6
.

Energy conservation then reads as

ρaL5ω2

32h
+ L3tρgω

2

6
= const

= ρaL5ω2
0

32h0
+ L3tρgω

2
0

6
,

and hence,

ω=ω0

√√√√√√1+ 3ρaL2

16ρg t
1

h0

1+ 3ρaL2

16ρg t
1
h

.

We can see that limh→0ω= 0, i.e. the air acts
as a cushion and stops the glass plate before
it hits the stationary plate.

iii) (3 points)The incomingwater from ‘2’ will
spread out axisymmetrically along the space
between the stone disk and the ceiling. After
that, it will spread into the basin and eventu‐
ally leave through the outgoing pipe ‘3’. The
stone disk is kept up by the pressure differ‐
ences between the top andbottomof the disc,
arising from the flow speed of the water dif‐
fering on either sides. The fact that pres‐
sures differ on boths sides can be seen dir‐
ectly by the application of the Bernoulli Prin‐
ciple p+ρwv2/2= const along a streamline or
by noting that the flow speed gradients are
driven by pressure gradients.

The flow speed outside the gap is negli‐
gible due to t ≪ R, hence we can take the
pressure at the bottom side to be uniformly
p0. The flow speed in the gap at a distance
x from the axis of symmetry can be found
from the conservation of mass applied on a
concentric cylinder of radius x and height t,
giving 2πxtρwv(x)=µ. Hence,

v(x)= µ

2πxtρwv(x)
.

Applying Bernoulli’s principle, we get p(x)+
ρwv2/2= p0 and so

∆p = p0 − p(x)= ρwv2

2
= 1

ρw

( µ

πr

)2
.

We can hence find the force due to the pres‐
sure differences in the gap by integrating



from x = r to x = R. First note that the res‐
ulting force will be pointing vertically up, be‐
cause p(x)< p0. Integrating,

F1 =
∫ x=R

x=r
2πxdx∆p

= µ2

4πt2ρw

∫ x=R

x=r

dx
x

= µ2

4πt2ρw
ln

(
R
r

)
.

Note that the water entering through the
pipe will slow down, pushing the disk fur‐
ther down. The net force from this, however,
turns out to be negligible due to the condi‐
tion r ≫ t. To see this, one can argue that
the said force is of order µvpipe ∼ µµ/(ρwr2) ∼
µ2/(ρwr2)≪ F1.

Further, we have the gravitational force
Fg =−mg =−πR2hρs g pulling the disk down.
The force balance then readsFg+F1 = 0. Solv‐
ing the equation, we find

µ= 2πRt

√
hρwρs

ln(R/r)
g.

iv) (0.5 points) In the context of thermody‐
namics, entropy is defined in terms of its dif‐
ferential, such that the change in entropy of
a system is given by dS = dQ/T, where dQ is
the heat entering the system, and T its tem‐
perature. Further, entropy in reversible ther‐
modynamic processes is a state function, i.e.
it only depends on the current (equilibrium)
thermodynamical state of the system. This
means that when calculating the entropy dif‐
ference of onemole of vapour and liquid, the
temperature at which the phase transition
took place does not affect the final result.

As such, it’s most convenient to consider
the two final states as only differing by the li‐
quid undergoing condensation at t0 = 100 °C.
The final temperature is t0 = 100 °C because
that’s when water vapour pressure is equal to
p0 (i.e. boiling temperature at atmospheric

pressure). This corresponds to a heat of∆Q =
mL = 1mol · ML entering the vapour system,
compared to the liquid one. Hence, the en‐
tropy difference between onemole of vapour
and liquid is given by

∆S = ∆Q
T0

= 1mol ·ML
T0

= 110J/K.

v) (3 points)Because the expansion of water is
reversible, entropy is conserved. This means
that the change in entropy due to the expan‐
sion of the vapour is balanced by the entropy
change due to condensation. As discussed
before, because entropy is a function of state,
it’s most convenient to calculate the entropy
change by imagining n moles of water (n will
later cancel out) cooling and expanding from
Tt, pt to T0, p0 and condensing rn moles of
water at the end. r is found by demanding
that ∆S = 0 in this process.

The entropy change of the vapour is
found by applying the first law of thermody‐
namics over a small temperature and pres‐
sure increment dT, dp:

dSvapour = dQ
T

= dU +dW
T

,

where dU = ncvdT is the change in internal
energy of the vapour and dW = pdV is the
work done by the vapour. Importantly, we
neglect the volume of water compared to the
vapour, as that allows using the ideal gas
to simplify the work differential. Using the
ideal gas law, we then have

pdV = pd
(

nRT
p

)
= nRdT −nRT

dp
p

.

Hence,

dSvapour = n(cv +R)
dT
T

−nR
dp
p

and we can integrate to get

∆Svapour = ncp ln
(

T0

T1

)
−nR ln

(
p0

p1

)

where cp = cv + R = R(i + 2)/2 = Rγ/(γ− 1) is
the heat capacity at constant pressure. The
net change in entropy is then

∆Stot = 0=∆Svapour +∆Scondens

=∆Svapour − rn
ML
T0

= ncp ln
(

T0

T1

)
−nR ln

(
p0

p1

)
− rn

ML
T0

.

Thus,

r = RT0

ML

(
ln

(
p1

p0

)
− γ

γ−1
ln

(
T1

T0

))
= 0.122.

To find the mass flow rate, we start by
finding the flow speed v of the outgoing li‐
quid/vapour. Since we know r, we can ap‐
ply energy conservation (necessary for the re‐
versibility to hold) on a flowing water packet.
This is most conveniently done by demand‐
ing energy conservation on the system as a
whole. Suppose that in some time interval n
moles of water vapour with a volume of Vt
are created at the boiler. Then at the out‐
let, in the steady state, due to conservation
of particles, (1− r)n moles of water vapour
at a volume of V0, alongside rn moles of li‐
quid water, are removed. The outflowing wa‐
ter has an additional kinetic energy of nµv2/2.
The energy change of the whole system due
to both steps must cancel each‐other out due
to energy conservation. We can write this as

0=Win −Wout +Uin −Uout −nMv2/2= 0,

where Win = ptVt = nRTt and Wout = p0V0 =
(1 − r)nRT0 are the works done by the in‐
coming and outgoing packet and similarly,
Uin = cvnTt andUout = cvnT0−rnML+rnRT0
are the internal energies of the incoming and
outgoing packet. Notice that for the outgo‐
ing internal energy, we have an extra term of
rp0V0 = rnRT0. This is because when talk‐
ing about the latent heat of vaporisation, it in‐
cludes the work done in order to expand the
vapour into the volume it’s supposed to oc‐
cupy. Therefore, we should subtract the said

work from the latent heat of vaporisation, in
order for it to capture the actual change in
the internal energy of the water. Combining
everything, we get

0= nRTt − (1− r)nRT0 + cvnTt

− cvnT0 + rnML− rnRT0 −nMv2/2,

and hence,

v =
√

2
( cp∆T

M
+ rL

)
= 640m/s.

The density of air at the outlet is found from
ideal gas law ρ = p0M/(RT0). The mass flow
rate is then

µ= Aρv = Ap0Mv
RT0

= 37g/s.

Grading:V
3. ROTATıNG ſPACE ſTATıON (12 points) —
Solution by Kaarel Hänni, grading schemes by ....

Grading:
i) (0.5 points) Letting ω be the angular velo‐
city, the acceleration experienced by people
on the “ground” is ω2R = ( 2π

τ

)2 R. Setting this
equal to g gives(

2π
τ

)2
R = g =⇒ τ= 2π

√
R
g
≈ 63.437s.

ii) (1.5 points) Let us consider the motion of
the ball in the non‐rotating (inertial) frame of
the center of mass of the spaceship. As the
travel time is t = τ/2, the throwing point on
the ground will rotate by exactly half a circle
between the ball being thrown and the ball
being caught. In our inertial frame, the tra‐
jectory of the ball will just be a straight line
between these two diametrically opposed
points; this has length 2R. In this inertial
frame, the ball thus travels with a constant
velocity vinertial = 2R

τ/2 = 4R
τ

(in the radial dir‐
ection). The initial velocity vector in the ro‐
tating frame is the difference of the velocity



vector in the inertial frame and the velocity
vector of the throwing point in the rotating
frame compared to the inertial frame. So the
initial velocity vector in the rotating frame
has a radial component of 4R

τ
and a tangen‐

tial component of 2πR
τ

. The throwing speed s
is the magnitude of this vector, which is

s =
√(

4R
τ

)2
+

(
2πR
τ

)2
= 2R

τ

√
4+π2 ≈ 117 m/s.

iii) (2 points) When the balloon comes to a
stop, it is in equilibrium in the rotating frame.
An object at radius R′ of mass m1 has a ficti‐
tious radial (downward) force of m1ω

2R′ act‐
ing on it in this frame. This force on the
mass m is mω2(R −H + l). The upward force
on the balloon is the difference between this
force for the balloon and the buoyant force
in the rotating frame, which is 4

3πr3(M −
M′) n

V ω2(R−H)= 4
3πr3(M−M′) P

RG T ω2(R−H).
Putting all this together, we can write down
the condition that the radial force is 0 in equi‐
librium

mω2(R−H+ l)= 4
3
πr3(M−M′)

P
RGT

ω2(R−H)

=⇒ m =
4
3πr3(M−M′)P(R−H)

RGT(R−H+ l)
≈ 112.3 kg.

iv) (1.5 points)In the rotating frame, letting r
be the distance from the axis of the cylinder,
there is an effective radial potential of

φ(r)=
∫ r

0
(−ω2x) dx =−ω2r2

2
,

where we have chosen the potential zero
level to be at r = 0. In other words, in
this frame, there is a fictitious radial force
of m1ω

2r = −m1
dφ
dr acting on an object of

mass m1. The rope takes a shape that minim‐
izes this potential energy. For this part and
the next, we will just be figuring out prop‐
erties of a rope that minimizes this poten‐
tial energy (and other than that, we can for‐
get about the rotation). Consider cutting off

a tiny piece of rope of length ℓ from point
C, then pulling the rope tight at C and glu‐
ing it back together (doing work ℓTC), then
cutting the rope open at A, letting it slip by
length ℓ (doing work −ℓTA), and finally mov‐
ing the tiny piece from point C to point A (do‐
ing work ℓλ(φ(R)−φ(R − h)) = − ℓλω2h(2R−h)

2 ),
filling the gap of length ℓ. The state of the
rope is now the same as initially, so the total
work done should be 0:

ℓTC −ℓTA − ℓλω2h(2R−h)
2

= 0,

from where

TA −TC =−λ2π2h(2R−h)
τ2 .

See 200 More Puzzling Physics Problems,
problem 78 (and its hint and solution) for a
longer explanation of this idea.

v) (1.5 points)Let’s use the equilibrium condi‐
tion that torque around the center of the cyl‐
inder is 0 (in the rotating frame) for the left
half of the rope. Note that the fictitious force
is radial, so that contributes nothing to the
force. So the only contributions are from the
tension in the rope on the two sides, so

RTA cosα= (R−h)TC =⇒ TA

TC
= R−h

R cosα
.

vi) (1.5 points) Let the x‐axis be the dia‐
meter AB, with coordinates chosen to be in
meters, and with the coordinates of A be‐
ing (−1000,0). (So the coordinates of B are
(1000,0) and the coordinates ofC are (0,−505).
The unique parabola y= ax2+bx+c that goes
through these three points has b = 0 from
symmetry across the y axis, c = −505 from
condsidering the point C, and then a =− 505

106

from considering the point A. The derivative
at A is dy

dx = 2a ·1000=− 101
100 , from which

cosα= −dy√
(dy)2 + (dx)2

= 1√
1+

(
dx
dy

)2
≈ 0.7106

Using the equations from parts (iv) and
(v), we now have a system of equations in two
unknowns:{

TA −TC =−λ2π2h(2R−h)
τ2

RTA ·0.7106= (R−h)TC
.

It remains to solve this system of equa‐
tions. The second equation gives TA =
TC

R−h
R·0.716 ≈ TC ·0.7053. Plugging this into the

first equation then gives

TC = λ2π2h(2R−h)
τ2(1−0.7053)

≈ 12400 N.

vii) (1.5 points) The rotating charge on the
walls is making the spaceship into a solenoid
carrying current I = Q

τ
. Inside of the space‐

ship, this creates a constant axial magnetic
field of magnitude

B =µ0
I
L

=µ0
Q
τL

.

The force this creates on the charged ball
is −qvB = −q 2πR

τ
µ0

Q
τL in the radial upward

direction. For the ball to hover above the
“ground” motionlessly, the acceleration cre‐
ated by this radial force has to be equal to the
centripetal acceleration ω2R = (2π)2R

τ2 :

− q
m

2πR
τ

µ0
Q
τL

= (2π)2R
τ2 =⇒ q

m
=−2πL

µ0Q
.

viii) (1 point) Consider a charge q1 at rest
at radius r in the rotating frame. The
electromagnetic force applied to it is frame‐
independently q1

2πr
τ

µ0
Q
τL . This charge is not

moving in the rotating frame, so in its frame,
the force applied to it by the magnetic field
must be 0, and so the electric field measured
in its frame must satisfy q1E = q1

2πr
τ

µ0
Q
τL ,

from where

E⃗ = 2πµ0Q
τ2L

r⃗.

We now have an expression for E at each
point in the rotating frame; what remains is

to evaluate
∮

E⃗ · dA⃗. For the sake of variety,
wewill demonstrate twoways to evaluate this
integral.

For the first option, note that our E⃗ =
const · r⃗ is exactly the electric field of a uni‐
formly charged cylinder (with the correctly
chosen charge density), and sowe could equi‐
valently find the same integral around such
a uniformly charged cylinder, which Gauss’
theorem gives as Vρ/ϵ0 = V · c1. We can find
an expression for the constant c1 by consider‐
ing the simple case where the surface we are
dealing with is a cylinder of width 1 m itself,
in which case the integral is∮

E⃗ ·dA⃗ = 1 m ·2πr
2πµ0Q
τ2L

r =V
4πµ0Q
τ2L

.

Hence, c1 = 4πµ0Q
τ2L , and so∮

E⃗ ·dA⃗ =V
4πµ0Q
τ2L

.

To briefly describe a second option for
evaluating this integral, note that by parti‐
tioning a 3D body into volume slices, with
each slice bounded by a volume element dA⃗
andwith cylindrical radius vector r⃗, andwith
the volume of each slice being r⃗ · dA⃗/2, we
get that the volume of the body is the sum of
volumes of all such slices,

V =
∮

1
2

r⃗ ·dA⃗.

This lets us evaluate the main integral as∮
E⃗ ·dA⃗ =

∮
2πµ0Q
τ2L

r⃗ ·dA⃗

= 4πµ0Q
τ2L

∮
1
2

r⃗ ·dA⃗ = 4πµ0Q
τ2L

V .

4. STRETCHıNG GLOVEſ (8 points) — Solution
by Eero Uustalu, grading schemes by ....

Part i

Cut a few strips of the material with the
same constant width and mark them with



two perpendicular lines close to the ends of
the strip while leaving ample space for affix‐
ing or binding. Then roll one strip length‐
wise into a cylindrical shape for stretch‐
ing. Measure the initial length between
the marked lines l0. With a straight meas‐
uring tape affixed to the surface of the
table, stretch one of the strips to the break‐
ing point while determining the maximum
length between the lines before the strip
breaks lmax. Repeat this at least three times
to see if the data is reproducible. Calculate
the result ϵmax = lmax−l0

l0
.

In our measurement we got ϵmax = 5.5

Part ii

We can assume the material has uniform
thickness. Knowing that σ = F

A , V = const,
and that any force applied to the strip affects
all directions perpendicular to the applied
force equally, then at any time for the same
strip

V = a·a·k·l = a0·a0·k·l0 = amax·amax·k·lmax

where a0 is the initial thickness of material
with no force applied and l0 is the initial
length of the strip with no force applied, a is
the thickness when force F is applied and l
is the length of strip when force F is applied,
amax and lmax are respective values at break‐
ing force Fmax.

k is the ratio between the width d and
the thickness a of the strip such that d = k·a
where k remains constant for the strip while
stretching. Therefore

σ= F
a·a·k and σmax = Fmax

amax·amax·k

From V = const we can deduce that a·a =
a0·a0·l0

l and amax·amax = a0·a0·l0
lmax

If we could apply the same force F on
strips of different initial widths d = k·a we
could vary the tension for each strip. There‐
fore we would be using different strips with
different k values for each measurement

σ= F
k · l

l0
· 1
a0·a0

and σmax = F
kmax

· lmax
l0

· 1
a0·a0

Where k = d/a and kmax = dmax/amax are
the width to thickness rations of the the re‐
spective strips used for F and Fmax. By com‐
bining the above, we get

σ

σmax
= kmax

k
· l

lmax

but since d0 = k·a0 is the initial un‐
stressed width of one strip and dmax0 =
kmax·a0 is the initial unstressed width of an‐
other strip stretched to the breaking point.
For building graph it transforms to:

σ
σmax

= dmax0
d0

· l
lmax

for the Y axis and

ϵ= l− l0
l0

for the X axis.

Measurements

We can assume the material has uniform
thickness. We want to apply the same force
on strips with different initial widths.

Solution 1

We make many strips with different
widths, mark them with the same initial
length l0 using perpendicular lines, measure
and record the initial widths d0 of each seg‐
ment, then roll them lengthwise into a cyl‐
indrical shape and bind them one after each
another. The force will be the same for all
segments but the value of σ for each segment
will depend on the initial width of each indi‐
vidual strip.

A range where dmin and dmax differ at

least 8 times is recommended.

Rolling the strip lengthwise into a cyl‐
indrical shape before binding gives the pos‐
sibility to distribute the force evenly on all
the strips regardless of the width of the strip!

Our solution was to make two identical
stripswith the smallest possiblewidth and at‐
tach them to one another at one end to form
a Y shape. The previously determined ϵmax
was used to estimate the possible maximum
stretch almost to the breaking point of the
narrowest strip. In case of a breakage event
the identical spare strip at the other end of
the Y shape could be used for measurement.
After affixing the multi‐width rope of com‐
bined strips at its maximum stretch position,
the values of l were recorded for each in‐
dividual section. Afterwards he rope was
stretched till break to find the actual break‐
ing length lmax of the narrowest strip.

The 7mm wide initially 80mm long test
strip break at length 522mm. Therefore the
measurement of the rope of strips was made
using force F stretching the second 7mm
wide 80mm test strip to 519mm .

But the 7mm stripemeasured breakwhen
it was stretched to 599mm .

So the dmax0 = 7mm and lmax = 599mm .

mm mm mm
(l− l0)/lo l0 l d0 σ/σmax

0,638 80 131 71 0,022
1,606 80 208,5 37 0,066
1,888 80 231 30 0,090
3,025 80 322 21,5 0,175
3,338 80 347 18 0,226
4,225 80 418 14 0,349
4,925 80 474 11 0,505
5,488 80 519 7 0,866

And the graph, σ
σmax

for the Y axis and ϵ

for the X axis.
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Solution 2

We make two identical elongated tri‐
angles from the longest piece of material
available. We mark the triangles with evenly
spaced perpendicular lines. (The lines are
perpendicular to the central symmetry line
of the elongated triangle.)

We record the initial length l0 and the av‐
erage width d0 of each segment as defined
by the perpendicular lines. When stretched,
all segments will have the same force applied
but each segment will have its own σ. We
have to affix the base of the prolonged tri‐
angle to the ruler with tape (it has to be a
good strong joint) and we affix the ruler to
the table. A long strip of graph paper was
taped to the table to have the rubber triangle
stretched over it.

The triangle was stretched until the nar‐
row end segment was near breaking point,
and the values of l were recorded for each
segment. (Most easily done by using a



marker on the graph paper while holding the
narrow end of the triangle at a fixed position
with the other hand). One of the triangles
was actually stretched to the braking point,
the other triangle was stretched to the break‐
ing point only after the measurement was
made.

The narrow end segment of the first tri‐
angle of 10mm long and the average width
6mm break at length 73,1mm. Therefore
the measurement of the second similar tri‐
angle tested was made using force F stretch‐
ing the narrow end segment of the triangle
to 72,6mm. The actual break of narrow
segment of the second triangle occurred at
length 73,7mm .

So the dmax0 = 6mm and lmax = 73,7mm .

mm mm mm
σ/σmax l0 l d0 (l− l0)/lo

0,985 6 10 72,6 6,26
0,605 8 10 59,5 4,95
0,444 10 10 54,5 4,45
0,333 12,5 10 51 4,1
0,266 15 10 49 3,9
0,221 17,5 10 47,5 3,75
0,183 20 10 45 3,5
0,148 22,5 10 41 3,1
0,129 24 10 38 2,8
0,104 27 10 34,5 2,45
0,074 32,5 10 29,5 1,95
0,061 36 10 27 1,7
0,051 39 10 24,5 1,45
0,043 41,5 10 22 1,2
0,037 46,5 10 21 1,1
0,030 50 10 18,5 0,85
0,022 56 10 15 0,5

And the graph, σ
σmax

for the Y axis and ϵ

for the X axis.
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Grading:


