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1. CURLıNG (8 points) — Oskar Vallhagen.

In the sport of curling, participants take
turns sliding near‐cylindrical stones across
an ice court towards a target, trying to get
their stones as close to the target as possible
after using a set of stones. A vertical cross
section of a stone is depicted below, showing
that the stone is in contact with the ice on a
thin ring of radius r. The full radius of the
stone isR, the mass of the stone ism and the
coefficient of friction with the ice is µ.

Consider the case when the stone is re‐
leased at a speed v0 with the aim of knocking
out an opponent’s stone at a distance s.
i) (1 point)Give an expression for the sliding
speed vs as a function of the time t since the
stonewas released until the stone hits the op‐
ponent’s stone.
ii) (1 point)What is the sliding speed vhit just
before the stone hits the opponent’s stone?

Now the stone is given a small rotation at
the initial angular speed ω0 (this can be done
to alter the deflection angle of the stonewhen
it hits the opponent’s stone). Assume that
the rotation speed ω remains small through‐
out the sliding motion: ωr ≪ vs. Keep only
the main non‐vanishing terms in your calcu‐
lations, i.e. among the terms with a factor
(ωr/vs)

n, keep only the term with the smal‐
lest n. Depending on your approach youmay
use the following approximations for x ≪ 1:
(1+x)α ≈ 1+αx+ 1

2α(α−1)x2, sin(α+ x) ≈
sinα+x cosα, cosx ≈ 1−x2/2. Youmay also
need the integral

∫
(at+ b)−1dt = a−1 ln |at+

b|+ C.

iii) (2 points) By how much does the friction
force on the stone change due to its rotation?
Express your answer in terms of the current
angular speed ω and sliding speed vs.
iv) (2 points)Give an expression for the torque
T exerted on the stone.
v) (2 points)What is the angular speed of the

stone just before it hits the opponent’s stone?
2. NıTROGEN EXPLOſıON (8 points) — Päivo
Simson.

A half‐sphere of radius r = 0.1 m is filled
with liquid nitrogen at the boiling point tem‐
perature of T1 = 77.4 K (−195.8 °C). The
other half is then firmly sealed onto the first,
creating a sphere containing liquid nitrogen
and nitrogen gas, each occupying one‐half
of the volume. The sphere is immediately
thrown into Tw = 20 °C temperature water,
where it floats exactly as shown in the figure
below. After some time, it explodes.

The sphere is made of PCTFE plastic of
density ρp = 2130 kg m−3, maximum tensile
strength σ = 3.4 × 107 N m−2 (above this
stress, the plastic will break) and thermal
conductivity k = 0.84 W m−1 K−1. For li‐
quid nitrogen, under the conditions con‐
sidered here, the latent heat of vaporiza‐
tion is λ = 2.0 × 105 J kg−1, specific heat
cv = 2000 J kg−1 K−1 and density ρn =
808 kg m−3. MolarmassM(N2) = 28 g mol−1.
The ideal gas constantR = 8.31 J K−1 mol−1.
Temperature dependence of saturated vapor
pressure of nitrogen is shown below.

i) (1.5 points)What is the wall thickness d of
the sphere?
ii) (1.5 points)What is the pressure p2 inside
the sphere right before it explodes? The out‐
side pressure is pa = 1.0 × 105 Pa.
iii) (1.5 points)What is the temperature T2 of
liquid nitrogen right before the explosion?
iv) (1.5 points)Calculate the mass of nitrogen

that evaporates inside the sphere before the
explosion.
v) (2 points)Estimate the time it will take for
the sphere to explode. The heat capacity of
the plastic and the heat flux through the up‐
per half of the sphere can be neglected.
3. WOBBLE (8 points) — Taavet Kalda. We
investigate the so‐called astrometric wobble
method for detecting exoplanets. The
method relies on the ability to measure the
change in position in the sky that the host
star experiences due to the gravitational in‐
fluence of its orbiting planets. This method
has become feasible in recent years due to
the availability of more precise instruments.
i) (2.5 points)Consider a system consisting of
a host star, an inner planet A, and an outer
planetB. Below is a measurement of the tra‐
jectory of the centre of the star in the plane
perpendicular to the line of sight, measured
over a period of t = 10 yr. In all of the
subsequent parts, you may assume that both
planets orbit in circular orbits in the plane of
the diagram. What are the orbital periods TA

and TB of the two planets?

ii) (2.5 points) Based on direct imaging of
planet A in the infrared, the orbital ra‐
dius of planet A is measured to be aA =
1.5 AU = 2.2 × 108 km. What is the mass
M of the host star, and the mass mA of
planet A? The gravitational constant is G =
6.67 × 10−11 m3 kg−1 s−2.
iii) (1 point) What is the mass mB of planet

B?
iv) (2 points)Now consider a similar t = 10 yr
measurement of a different system shown
below, also consisting of a host star and
two planets A and B (where A is the inner
planet). Similarly to before, find the massM
of the host star, and the masses mA, mB of
the planets in the new system. As before, dir‐
ect imaging yields that the orbital radius of
planet A is aA = 1.3 AU = 2.0 × 108 km.

4. BLACĸ BOX (12 points) — Jaan Kalda, Eero
Uustalu.

Tools: a black box with two output ter‐
minals, a multimeter, a stopwatch, wires.

The resistance of the multimeter is as
follows: when used as microammeter —
103.2Ω; when used as a milliammeter —
4.2Ω; when used as a voltmeter —more than
10 MΩ. When used as a voltmeter, the mul‐
timeter will automatically determine the op‐
timum range, but this will slow it down; to
make it faster, press the “Range” button to fix
it to the current range.

Which four components (apart from the
wires; there can be more than one of the
same type) are in the black box? What are
the values of the quantities that character‐
ise these components and how could they
be connected? Document and tabulate all
your measurements and plot them graphic‐
ally where appropriate.
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5. FORCE ſENſOR (5 points) — Päivo Simson.

A force sensor is constructed from a flex‐
ible beam of working length L and height
h to which four identical electrically resist‐
ive wires of length l ≪ L are attached, as
shown in the figure below. If a force F is ap‐
plied to the end of the beam, it will bend the
beam and stretch the upper wires and com‐
press the lower ones, causing changes in the
electrical resistance. Using the Wheatstone
bridgemethod, these changes can be conver‐
ted into a voltmeter reading, allowing for the
measurement of the applied force F .

In what follows, assume that the deflec‐
tion of the beam is very small.
i) (2 points) The bending moment M(x) (i.e.
the torque with which one fictitious half of
the beam affects the other) is inversely pro‐
portional to the curvature radius r(x) of the
center line of the beam: M = EI/r, where
E is Young’s modulus and I is a constant de‐
pending on the geometry of the of the beam’s
cross‐section (both are known). Find the
elongation∆l of the upper wire when a force
F is applied to the sensor. Assume that the
wires are placed in the middle of the beam.
ii) (1 point) Find the resistances R1 and R2

when∆l from the previous section is known
and the initial resistance of the wires is R0.
Assume that the volume of the wire remains
constant during the deformation.
iii) (2 points) The resistors are arranged in
a Wheatstone bridge configuration shown in
the figure below, where U is the known bat‐
tery voltage. Find the relationship between
the measured voltage V and the force F .

6. STRıNG‐COUPLED MAſſEſ (5 points) —
Aleksi Kononen.

Two small masses m are connected and
hung between walls by weightless strings
as pictured below. The acceleration due to
gravity is g. All oscillatorymotion is assumed
to have a small amplitude and the system is
always in one of its normal modes (i.e. the
oscillations are sinusoidal).
i) (2 points) Find ω1, the angular frequency
of in‐phase oscillations (by which the oscil‐
lation phases of the both masses are always
equal), perpendicular to the plane of the fig‐
ure.
ii) (3 points) Find ω2, the angular frequency
of anti‐phase oscillations (by which the oscil‐
lation phases of the both masses are always
opposite), in terms of ω1.

7. A ſTACĸ OF PAPERſ (8 points) — Taavet
Kalda and Jaan Kalda.

There is a pack of N ≫ 1 identical sheets
of papers lying on an infinite horizontal
table. The coefficient of friction between the
surface of the table, and between two sheets
of paper are both equal to µ. Each sheet has
dimensions L × W , with L > W . Sandra
is trying to fetch the bottom‐most sheet by
pulling from a shorter edge of it with a con‐
stant velocity u (while all the sheets lie al‐
most exactly on top of each other, she man‐
aged to get hold of an edge of the bottom‐
most sheet).
i) (2 points)Sketch a qualitative graph of how
the acceleration a of the pack (excluding the
bottom‐most sheet) depends on time when
(a) the speed u is very small.

(b) the speed u is very big.
ii) (3 points)What is the minimal speed umin
by which it is possible to pull the bottom‐
most sheet out (i.e. separating it completely
from the remaining pack)?
iii) (1 point) Assuming u > umin, what is
the speed of the remaining pack at the mo‐
ment when the bottom‐most sheet gets out of
the pack (i.e. there is no longer overlapping
areas)?
iv) (2 points)Considering still u > umin, what
is the minimal distance l between the pack
of papers and the edge of the table such that
the pack would not slide over the edge of the
table? (l is the maximal allowed travel dis‐
tance of the pack.)
8. CONNECTED CHARGEſ (8 points) — Jaan
Kalda.

In the region 0 < x < L, there is an
electric field E⃗ = E0x̂, where x̂ denotes the
unit vector parallel to the x‐axis. Two small
balls, each of mass m and carrying charge q
(qE0 > 0) are connected with a weightless
non‐stretchable string of length l. Initially,
at the moment of time t = 0, the string is
taut, the velocity of the both balls is v⃗ = v0x̂,
one of the balls, the ball A, is at x = 0 while
the other ball, the ball B is at x < 0. The
electric field created by the balls can be neg‐
lected, and it can be assumed that v0 is very
small (much smaller than

√
ELq/m).

i) (2 points)Consider the case when the string
is parallel to the x‐axis, and l = L Sketch the
dependence of the velocity of the both balls
as a function of time. Will the balls collide?
If yes then when?
ii) (2 points) Now, at t = 0, the string forms
an angle of 45° with the x‐axis, l = 1.2291L.
By this string length, at the moment t = T
when the ball A reaches x = L, the string is
parallel to the x‐axis. Find T .
iii) (2 points) Under the assumptions of the
previous task, what is the speed of the ball A
at the moment t = T ?
iv) (2 points) Now, at t = 0, the string forms
a very small angle ϕ with the x‐axis. Simil‐
arly to the previous two tasks, at the moment
t = T ′ when the ball A reaches x = L, the
string is parallel to the x‐axis. Find the string
length l assuming that l > L. The answer to

this point should contain only L and numerical
constants.
9. SURFACE TENſıON (10 points) — Jaan
Kalda, Eero Uustalu.

Tools: a syringe, a small glass plate, a
support for holding the glass plate horizont‐
ally at an adjustable height, a cup with water
(coefficient of refraction of water nw = 1.33),
a caliper, a sheet of graph paper. Your work‐
ing roomhas ceiling lights at an approximate
height of 3 m. The glass plate holder is a short
piece of plastic pipe with a nut; put the glass
plate on top of the nut and turn the nut to ad‐
just the height. By turning the nut, one can
change the holder height only by the thick‐
ness of the nut; there are also spare nuts that
can be stacked to increase the total height of
the pipe‐nuts system, and a cap that fits into
the pipe — use it if there is a need to make
the distance between the glass plate and the
surface beneath it smaller than the height of
the pipe. NB! Hold the glass plate only from
its matte part and do not touch the glossy
(transparent) part as fingerprints will affect
the value of the contact angle. If you acci‐
dentally do touch, ask organisers to clean the
glass surface.
i) (3 points) Put a small drop of water onto
the glass plate; this will form a plano‐convex
lens. Determine the focal length of this lens
and measure its diameter.
ii) (2 points) Calculate the curvature radius
of the water surface and the water‐glass con‐
tact angle α. The contact angle is defined as
the angle under which the water surface (the
air‐water interface) meets the surface of the
glass plate.
iii) (3 points)Now increase the amount of wa‐
ter on the glass plate so that it covers a big
part of the glass plate so that its top surface
becomes almost flat. Determine the thick‐
ness of the water layer.
iv) (2 points) Calculate the surface tension
of water σ. Hint: a given amount of wa‐
ter takes a shape which minimises its total
potential energy. Use reasonable approxim‐
ations. Keep in mind that the glass‐water
interface makes also a certain contribution
Ugw to the full surface energy, themagnitude
of which is related to the contact angle:
Ugw = −σ cosαA, where A denotes the sur‐
face area of the glass‐water interface.


