
NORDıC‐BALTıC PHYſıCſ OLYMPıAD 2025

1. FLYıNG DUMBBELL (10 points) — Jaan
Kalda.

In this problem, we shall study the dy‐
namics of a dumbbell consisting of two steel
balls, each with radius r = 1 cm, connected
by a steel rod with diameter d = 1 mm and
length l = 10 cm, in the absence of gravity.
Unless instructed otherwise, assume steel is
perfectly elastic. You may simplify your cal‐
culations by assuming l ≫ r.
i) (2 points) Given that the Young’s modulus
of steel is Y = 2 × 1011 Pa and the density
of steel is ρ = 7800 kg m−3, determine the
period T of free longitudinal oscillations of
the dumbbell. (Do not consider oscillations
with standing waves in the rod where the
balls remain almost at rest.) Young’s modu‐
lus is the ratio of a material’s stress (force per
unit area) to its strain (relative deformation).
ii) (2 points)Estimate the impact time τ when
a steel ball bounces off a steel wall.
iii) (2 points) The dumbbell moves toward a
steel wall with velocity v⃗ = −vx̂, with its axis
perpendicular to thewall, and bounces back.
Here, x̂ denotes a unit vector along the axis
perpendicular to the wall. Sketch how the x‐
component vx of the front ball’s velocity (the
ball that collides with the wall) depends on
time.
iv) (2 points) Now, the dumbbell moves to‐
ward a steel wall with velocity v⃗ = −vx̂ as
before, but its axis forms an angle α with the
x‐axis. The interaction of the front ball with
thewall depends qualitatively on the angleα,
with a transition fromone type of interaction
to another occurring at α = α0. Determine
the value of α0. Hint: min

( sin x
x

)
≈ −0.217.

v) (2 points) Under the assumptions of the
previous task, let α > α0. Additionally, as‐
sume that while steel is highly elastic, it is
not infinitely so: any oscillations excited in
the rod will decay by the time the rear ball
collides with the wall. Determine the speed
with which the centre of mass of the dumb‐
bell departs from the wall.
2. EVAPORATıON (7 points) — Jaan Kalda.

For the subsequent tasks, the graph
shows how the density of saturated water va‐

pour in g m−3 depends on the temperature in
°C.
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Youmay also use the following character‐
istics of water. Specific heat capacity c =
4200 J kg−1 K−1; latent heat of vaporization
L = 2260 kJ kg−1; density ρ = 1000 kg m−3;
molar mass of water µ = 18 g mol−1. You
may also assume water vapour to behave as
an ideal gas. The universal gas constant is
R = 8.31 J mol−1 K−1.
i) (2 points) A cylinder contains a certain
amount of water at temperature T0 = 90 °C,
see the figure. The cross‐sectional area of
the piston is S = 1 dm2. What is the min‐
imumpulling force required tomove the pis‐
ton? The pressure of the surrounding air is
p0 = 100 kPa.
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ii) (2 points) If the piston is pulled so that
it shifts by a = 3 dm, the water cools to a
temperature of T1 = 89 °C; what is the mass
of the water under the piston?

Water evaporation has a cooling effect
the intensity of which depends on the rel‐
ative humidity and air convection intensity.
It appears, however, that once a dynamical
thermal equilibrium is reached, the equilib‐
rium temperature of a wet surface depends
only on the relative humidity and the tem‐
perature of air and does not depend on the
convection speed (as long as the convection
is not too weak). This is so because the two
competing processes determining the equi‐
librium state both depend on the thickness
of the laminar (non‐turbulent) surface layer
exactly in the same way. In what follows
we shall use the following assumptions. (a)

Atop a wet surface (such as a sweating bare
skin), there is a layer with a laminar flow of
a certain thickness d. (b) Atop the laminar
layer, the surrounding turbulent flow keeps
a constant temperature T and relative hu‐
midity r, both equal to the respective val‐
ues in the bulk of the surrounding air. (c)
Heat flux from beneath the wet surface (e.g.
through the skin) can be neglected. (d) The
heat conductivity of air κ = 30 mW m−1 K−1

at T = 70 °C (neglect the temperature de‐
pendence), and the diffusivity of water mo‐
lecules in air D = 26 mm2 s−1. Neglect the
dependence of D on the temperature. Note
that the particle flux (net number of mo‐
lecules passing a cross‐section in y–z‐plane
per second and per cross‐sectional area) can
be found as J = D dn

dx , where n denotes the
number density (number of molecules per
volume).
iii) (3 points) Determine the temperature of
sweating human skin in a sauna if the air
temperature T = 110 °C and r = 3%.
3. NUCLEAR REACTORſ (6 points) — Topi
Lind. In order to maintain a chain reac‐
tion in a modern thermal‐neutron nuclear
reactor one needs three things: 1. nuclear
fuel (e. g. U235), 2. moderator (e. g. water)
and 3. coolant. In most cases the moderator
acts as the coolant aswell. Neutrons released
from a thermal fission of U235 have a mean
kinetic energy of approximatelyE0 = 2 MeV.
However, neutrons which are that fast are in‐
efficient in triggering fission of U235: neut‐
rons need to be slowed down to an average
kinetic energy of Ef = 0.025 eV. In what fol‐
lows, justify why non‐relativistic approxima‐
tions can be used unless explicitly instructed
otherwise.
i) (1 point) The rest energy of neutrons
mnc

2 = 940 MeV, the Boltzmann constant
kB = 1.38 × 10−23 J K−1, and the elementary
charge e = 1.602 × 10−19 C. What is the re‐
quired speed of neutrons, i. e. the speed of
neutronswith kinetic energyEf ? What is the
temperature Tf of a neutron gas where the
average kinetic energy of neutrons is Ef ?
ii) (1 point)What is the initial speed of neut‐
rons, i. e. the speed of neutrons with energy
E0?
iii) (2.5 points) From a completely non‐

relativistic point of view, what should be the
mass of the moderator’s atoms to slow down
the fast neutrons as efficiently as possible? If
themass of themoderator’s atoms were to be
M = 135mn, how many collisions with such
atoms at a temperature much lower than Tf

would a fast neutron need to experience to
slow down from E0 to Ef ? Assume that all
collisions are elastic and central.
iv) (1.5 points) Nuclear fuel, i.e. U235, is
placed inside metal rods and pressurized
with helium gas to p0 = 2.5 MPa. Dur‐
ing operation, as U235 keeps on fissioning
inside the fuel rods, there is a build up of
gas inside the rods. With a non‐invasive
ultrasound measurement we can measure
that the gas pressure inside the rod after it
is finally picked out from the core is p =
6.5 MPa. Assuming that the gas released in‐
side the rods is completely made of xenon
isotope 135

54Xe and that the initial gas volume
drops from V0 = 18 cm3 to V = 9 cm3

due to the swelling of the fuel pellets, how
many moles of xenon are released from fis‐
sion? What is the ratio of helium to xenon
inside the rod? The measurements are done
at T0 = 20 °C; the universal gas constant
R = 8.31 J mol−1 K−1.
4. BLACĸ BOX (12 points) — Eero Uustalu.
Tools: a black box with a yellow and a blue
lead, two multimeters, a voltage source (that
is connected in series with a resistor to limit
the maximal current), wires, sheets of graph
paper. In the black box, there are three di‐
odes and a resistor.

You are allowed to connect your circuit
to the power source only through the yel‐
low lead with a built‐in resistor (that is
already connected to the power source)!

For each series of measurements, also
draw the circuit used!
i) (4 points) Determine the electrical circuit
inside the black box.
ii) (2 points) Determine the resistance of the
resistor.
iii) (6 points)Determine the opening voltages
of all the diodes (at which the current
reaches 1 mA).



5. THROWıNG (6 points) — Eppu Leinonen.
i) (2 points) A drone starts from the origin at
rest and accelerates horizontally with an ac‐
celeration g to the +x direction. Simultan‐
eously, a ball is thrown from the point with
coordinates (x,y) = (−h, − h). What is the
minimum initial speed the ball needs to hit
the drone? The free fall acceleration g is anti‐
parallel to the y‐axis.
ii) (4 points) A stone is thrown from point S
(shown in the figure below) with an initial
speed v. A boy at point B wishes to hit the
stone in midair by throwing a ball simultan‐
eously with the stone’s release. He wants to
use the minimum possible speed u that will
still allow the ball to hit the stone in midair.
After calculating the stone’s trajectory, he de‐
termines the optimal trajectory for the ball
and throws it according to his calculations.
The collision point C is shown in the fig‐
ure. Using the scale provided and necessary
measurements from the figure, find the ini‐
tial speeds v of the stone and u of the ball.
The free fall acceleration is g = 9.8 m s−2.
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6. BıRDſ (4 points) — Jaan Kalda.
A long and thin homogenous beam with

uniform thickness and square cross‐section
floats horizontally in water with its top sur‐
face parallel to the water surface. A bird
lands on one end of the beam, and as a res‐
ult, the beam sinks so that the edge of the
upper face on the bird’s side is exactly at the
sameheight as thewater surface, while at the
other end of the beam the lower face does not
rise above the water. What is the maximum
number of suchbirds that this beamcanhold
above water?
7. CHARGED ROD (6 points) — Jaan Kalda.
A rod of mass m carries a charge q; both the
charge and the mass are homogeneously dis‐
tributed over its entire length l. The system
is in homogeneousmagnetic field of strength
B, parallel to the z‐axis whereas the rod is
in the x–y‐plane. Neglect any forces except
for the Lorentz force. One end of the rod is

painted red, and the other — blue.
i) (2 points) Consider the case when the rod
rotates around its centre of mass. What
should be the angular speed ω for the mech‐
anical tension force at the centre of the rod
to be zero?
ii) (4 points) Consider now a case when ini‐
tially the blue end of the rod is at the origin
(x = y = 0), and the red end at x = l. The
blue end’s initial speed is zero while the red
end’s speed is v, parallel to the y‐axis. It turns
out that after a certain time t, the red end
passes through the origin. Find the smallest
possible value for t and express the corres‐
ponding value of v in terms ofm, q and l.
8. PHAſE ſPıRAL (9 points) — Taavet Kalda.
Here we shall study the motion of Milky Way
stars in the Solar neighbourhood in the dir‐
ection of the z‐axis, i. e. perpendicular to
the galactic plane. For our purposes, we
can model the galactic gravity field as be‐
ing created by a continuous mass density ρ
(that accounts for the masses of stars, dark
matter, gas, interstellar dust, etc), and as‐
sume that thismass forms an infinitemirror‐
symmetric plate, i. e. ρ ≡ ρ(z) and ρ(z) =
ρ(−z) is independent of x and y. Through‐
out the problem, you may assume that each
star’s total energy is conserved over the en‐
tire considered time period. Gravitational
constant G = 6.67 × 10−11 m3 kg−1 s−2 =
4.30 × 10−3 pc M−1

⊙ (km/s)2.
i) (1 point) Assuming that the mass density
is constant over the plate’s thickness. i.e.
ρ(z) = ρ0, what is the acceleration az of a
star at a distance z from the mid‐plane?
ii) (0.5 points)Consider a star that starts with
zero velocity at a distance of z = a from the
mid‐plane. With what period does it start os‐
cillating around the mid‐plane?

In reality, density decreases with growing
|z|. Measuring density has been a great chal‐
lenge because of contributions from dark
and other difficult‐to‐see matter. Here, we
consider a breakthrough method of doing
it. Consider the distributions of the stars in
our neighbourhood on the z–vz phase plane,
where each star is a dot with coordinates
(vz,z); vz denotes the z‐component the star’s
velocity, and z – the vertical coordinate. Ini‐
tially, these dots were distributed nearly ho‐

mogeneously, but some time ago, the Milky
Way was perturbed externally, probably by
a passing‐by dwarf galaxy; this shuffled the
positions and velocities of stars, creating a
bar‐shaped overdensity region. When mov‐
ing within that bar‐shaped region from the
centre to the periphery, the total energy per
mass of stars increased monotonously. Over
time, this overdensity region started “wind‐
ing up”, due to the oscillation periods of stars
in the vertical planedepending on their oscil‐
lation amplitude zm, and evolved into a spiral
pictured below (Antoja et al. 2018, Nature
561, 360). An observation that you need to
exploit below is that the ordering of stars by
energies along the spiral today remains the
same as it was at the time of perturbation.

The oscillation period of stars depends on
the amplitude zm because the gravitational
potential (the potential energy per mass)
Φ(z) is not parabolic. In such a case, the
period can be approximately foundby substi‐
tuting the realΦ(z)with a kz2 matchingΦ(z)
at z = zm, i. e. with k = Φ(zm)/z2m.
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iii) (2.5 points) At the intersection points of
the spiral with vz = 0, calculate Φ(z) by in‐
terpolating data linearly where appropriate;
plot your results (this follows the analysis of
Guo et al. 2024, ApJ, 960, 133).
iv) (1 point) Assuming that the mass density
is almost constant for |z| ≤ 0.3 kpc, what is
the mass density near z = 0?
v) (2 points)Darkmatter is an “invisible” form
of matter that only interacts by gravity. In
general, it is found that dark matter forms

halos that extend significantly farther than
visible matter structures. By assuming that
the dark matter density doesn’t vary signific‐
antly within the volume of interest and that it
starts dominating far away from the galactic
plane, from around z = 0.7 kpc, estimate the
local dark matter density ρDM.
vi) (2 points)How long ago did the perturba‐
tion occur?
9. HOT PLATE (12 points) — Jaan Kalda.
Tools: a resistor with resistance R = 220Ω
mounted in one corner of a foamplastic plate
(resistor’s upper surface is painted black), a
power supply (on the power supply, read‐
ings other than voltage are not reliable!), two
identical 40 mm × 40 mm aluminium plates
that differ only in their coating: one is pol‐
ished, the other is anodized black and can be
assumed to be a black body, 4 silicone rub‐
ber pads of thickness t = 0.8 mm, a foam cup
with hot water, tweezers, a stopwatch, an
infrared thermometer (press the knob twice
and take a reading) , sheets of graph paper
and paper tissues for cleaning. Note that
for thermal radiation, water can be also as‐
sumed to be a black body.

Do not apply voltages higher than U =
15 V to the resistor as this will lead to a
melting of the foam plastic! Please handle
foam cupswith care and do not break them
(you will not get a spare one)!
i) (3 points) Determine the emissivity
(thermal radiation power relative to a black
body) of the polished aluminium plate. Hint:
infrared thermometers measure temperat‐
ure via thermal radiation power (assume it
is calibrated for objects of 100% emissivity);
within relevant temperature ranges, this
relationship can be approximated as linear,
ii) (3 points)Determine the heat transfer coef‐
ficient between the top surface of the black
aluminium plate and air (i. e. the coefficient
of proportionality between heat dissipation
power and the temperature difference) that
includes both conductive and radiative heat
transfer.
iii) (2 points) Determine the heat capacity of
a metal plate.
iv) (4 points)Determine the heat conductance
of silicon rubber pads (neglect their heat ca‐
pacitance).


